Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Pediatr Endocrinol Diabetes Metab ; 27(2): 134-140, 2021.
Article in English | MEDLINE | ID: covidwho-20234510

ABSTRACT

Metformin is a widely used biguanide drug recommended as a first-line antidiabetic for type 2 diabetes. Currently, metformin is used not only in the treatment of diabetes but also in other diseases. Some studies have shown that metformin causes weight loss in insulin-sensitive and insulin-resistant overweight and obese patients. Metformin is an effective and safe option for women with gestational diabetes and type 2 diabetes in pregnancy, and it may also increase the ovulation rate in patients with polycystic ovary syndrome (PCOS). Longer survival times have been observed in cancer patients using metformin. Metformin has been shown to significantly correlate with lower mortality in obese or type 2 diabetic women hospitalized for COVID-19. It also has a protective effect on the development and progression of many types of cancer. The mechanisms of action of metformin are complex and still not fully understood. Metformin has been shown to act through both AMP-activated protein kinase (AMPK)-dependent mechanisms and AMPK-independent mechanisms. This paper presents the benefits of using metformin in the treatment of various diseases.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Pregnancy , SARS-CoV-2
3.
Int J Environ Res Public Health ; 20(9)2023 05 04.
Article in English | MEDLINE | ID: covidwho-2315107

ABSTRACT

INTRODUCTION: Continuous subcutaneous insulin infusion (CSII) has emerged as a potential solution for diabetes management during the pandemic, as it reduces the need for in-person visits and allows for remote monitoring of patients. Telemedicine has also become increasingly important in the management of diabetes during the pandemic, as it allows healthcare providers to provide remote consultations and support. Here, we discuss the implications of this approach for diabetes management beyond the pandemic, including the potential for increased access to care and improved patient outcomes. METHODS: We performed a longitudinal observational study between 1 March 2020 and 31 December 2020 to evaluate glycemic parameters in diabetic patients with CSII in a telehealth service. Glycemic parameters were time in range (TIR), time above range, time below range, mean daily glucose, glucose management indicator (GMI), and glycemic variability control. RESULTS: A total of 36 patients were included in the study, with 29 having type 1 diabetes and 6 having type 2 diabetes. The study found that the proportion of patients achieving target glucose variability and GMI remained unchanged during follow-up. However, in patients with type 2 diabetes, the time in target range increased from 70% to 80%, and the time in hyperglycemia decreased from 2% to 0%. CONCLUSIONS: The results of this study suggest that telemedicine is a strategy for maintaining glycemic control in patients using CSII. However, the lack of access to the internet and adequate telemonitoring devices make it difficult to use on a large scale in emerging countries like ours.


Subject(s)
Diabetes Mellitus, Type 2 , Telemedicine , Humans , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose , Latin America , Glycated Hemoglobin , Insulin/therapeutic use , Glucose , Hospitals
5.
Nat Rev Endocrinol ; 19(8): 460-476, 2023 08.
Article in English | MEDLINE | ID: covidwho-2314583

ABSTRACT

Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Glucose
6.
Diabetes Res Clin Pract ; 200: 110692, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2311719

ABSTRACT

AIMS: We designed this study to determine whether metformin use before COVID-19 vaccination influences the risk of COVID-19 infection, medical utilization, and mortality. METHODS: We used the US collaborative network of TriNetX to identify 123,709 patients with type 2 diabetes mellitus fully vaccinated against COVID-19 between January 1, 2020, and November 22, 2022. The study selected 20,894 pairs of metformin users and nonusers by propensity score matching. The Kaplan-Meier method and Cox proportional hazards models were used to compare the risks of COVID-19 infection, medical utilization, and mortality between the study and control groups. RESULTS: No significant difference was noted between metformin users and nonusers in the risk of COVID-19 incidence (aHR = 1.02, 95% CI = 0.94-1.10). Compared to the control cohort, the metformin cohort exhibited a significantly lower risk of hospitalization (aHR = 0.85, 95% CI = 0.81-0.89), critical care services (aHR = 0.81, 95% CI = 0.70-0.94), mechanical ventilation (aHR = 0.75, 95% CI = 0.60-0.95), and mortality (aHR = 0.75, 95% CI = 0.63-0.89). The subgroup analyses and sensitivity analysis showed similar results. CONCLUSION: The present study showed that metformin use before COVID-19 vaccination could not reduce COVID-19 incidence; however, it was associated with significantly lower risks of hospitalization, intensive care service, mechanical ventilation, and mortality in fully vaccinated type 2 diabetes mellitus patients.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Hypoglycemic Agents/therapeutic use , Incidence , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/complications , Retrospective Studies
7.
Annu Rev Med ; 73: 129-147, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-2310996

ABSTRACT

The prevalence of diabetes in people with coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has varied worldwide. Most of the available evidence suggests a significant increase in severity and mortality of COVID-19 in people with either type 1 (T1DM) or type 2 diabetes mellitus (T2DM), especially in association with poor glycemic control. While new-onset hyperglycemia and new-onset diabetes (both T1DM and T2DM) have been increasingly recognized in the context of COVID-19 and have been associated with worse outcome, no conclusive evidence yet suggests direct tropism of SARS-CoV-2 on the ß cells of pancreatic islets. While all approved oral antidiabetic agents appear to be safe in people with T2DM having COVID-19, no conclusive data are yet available to indicate a mortality benefit with any class of these drugs, in the absence of large randomized controlled trials.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hyperglycemia , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Hypoglycemic Agents/therapeutic use , SARS-CoV-2
9.
Bioorg Med Chem Lett ; 86: 129241, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2262752

ABSTRACT

Metformin is the most widely known anti-hyperglycemic, officially acquired by the USA government in 1995 and in 2001 it became the most prescribed treatment for type II diabetes. But how did it become the must-use drug for this disease in such a short period of time? it all started with traditional medicine, by using a plant known as "goat's rue" for the reduction of blood glucose levels. Its use arose in 1918 and evolved to the metformin synthesis in laboratories a couple of years later, using very rudimentary methods which involved melting and strong heating. Thus, a first synthetic route that allowed the preparation of the initial metformin derivates was established. Some of these resulted toxics, and others outperformed the metformin, reducing the blood glucose levels in such efficient way. Nevertheless, the risk and documented cases of lactic acidosis increased with metformin derivatives like buformin and phenformin. Recently, metformin has been widely studied, and it has been associated and tested in the treatment of type II diabetes, cancer, polycystic ovarian syndrome, cell differentiation to oligodendrocytes, reduction of oxidative stress in cells, weight reduction, as anti-inflammatory and even in the recent COVID-19 disease. Herein we briefly review and analyze the history, synthesis, and biological applications of metformin and its derivates.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Blood Glucose
10.
Clin Ther ; 45(4): e115-e126, 2023 04.
Article in English | MEDLINE | ID: covidwho-2259419

ABSTRACT

PURPOSE: It has been reported that dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 RA), and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) have a role in modulation of inflammation associated with coronavirus disease 2019 (COVID-19). This study assessed the effect of these drug classes on COVID-19-related outcomes. METHODS: Using a COVID-19 linkable administrative database, we selected patients aged ≥40 years with at least 2 prescriptions of DPP-4i, GLP-1 RA, or SGLT-2i or any other antihyperglycemic drug and a diagnosis of COVID-19 from February 15, 2020, to March 15, 2021. Adjusted odds ratios (ORs) with 95% CIs were used to calculate the association between treatments and all-cause and in-hospital mortality and COVID-19-related hospitalization. A sensitivity analysis was performed by using inverse probability treatment weighting. FINDINGS: Overall, 32,853 subjects were included in the analysis. Multivariable models showed a reduction of the risk for COVID-19 outcomes for users of DPP-4i, GLP-1 RA, and SGLT-2i compared with nonusers, although statistical significance was reached only in DPP-4i users for total mortality (OR, 0.89; 95% CI, 0.82-0.97). The sensitivity analysis confirmed the main results reaching a significant reduction for hospital admission in GLP-1 RA users and in-hospital mortality in SGLT-2i users compared with nonusers. IMPLICATIONS: This study found a beneficial effect in the risk reduction of COVID-19 total mortality in DPP-4i users compared with nonusers. A positive trend was also observed in users of GLP-1 RA and SGLT-2i compared with nonusers. Randomized clinical trials are needed to confirm the effect of these drug classes as potential therapy for the treatment of COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Humans , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Glucagon-Like Peptide-1 Receptor , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , COVID-19/complications , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Glucagon-Like Peptide 1 , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Glucose , Sodium/therapeutic use
11.
Exp Clin Endocrinol Diabetes ; 131(5): 260-267, 2023 May.
Article in English | MEDLINE | ID: covidwho-2276753

ABSTRACT

The growing amount of evidence suggests the existence of a bidirectional relation between coronavirus disease 2019 (COVID-19) and type 2 diabetes mellitus (T2DM), as these two conditions exacerbate each other, causing a significant healthcare and socioeconomic burden. The alterations in innate and adaptive cellular immunity, adipose tissue, alveolar and endothelial dysfunction, hypercoagulation, the propensity to an increased viral load, and chronic diabetic complications are all associated with glucometabolic perturbations of T2DM patients that predispose them to severe forms of COVID-19 and mortality. Severe acute respiratory syndrome coronavirus 2 infection negatively impacts glucose homeostasis due to its effects on insulin sensitivity and ß-cell function, further aggravating the preexisting glucometabolic perturbations in individuals with T2DM. Thus, the most effective ways are urgently needed for countering these glucometabolic disturbances occurring during acute COVID-19 illness in T2DM patients. The novel classes of antidiabetic medications (dipeptidyl peptidase 4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and sodium-glucose co-transporter-2 inhibitors (SGLT-2is) are considered candidate drugs for this purpose. This review article summarizes current knowledge regarding glucometabolic disturbances during acute COVID-19 illness in T2DM patients and the potential ways to tackle them using novel antidiabetic medications. Recent observational data suggest that preadmission use of GLP-1 RAs and SGLT-2is are associated with decreased patient mortality, while DPP-4is is associated with increased in-hospital mortality of T2DM patients with COVID-19. Although these results provide further evidence for the widespread use of these two classes of medications in this COVID-19 era, dedicated randomized controlled trials analyzing the effects of in-hospital use of novel antidiabetic agents in T2DM patients with COVID-19 are needed.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , COVID-19/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Glucose
12.
Expert Rev Endocrinol Metab ; 18(2): 199-207, 2023 03.
Article in English | MEDLINE | ID: covidwho-2272336

ABSTRACT

INTRODUCTION: Diabetes mellitus (DM) and the 2019 coronavirus (COVID-19) appear to interact in both directions. There is mounting proof that patients with DM have a worse COVID-19 prognosis than those without it. Pharmacotherapy is also known to affect in view of the possible interplay between drugs and the pathophysiology of the above conditions in a given patient. AREAS COVERED: In this review, we discuss the pathogenesis of COVID-19 and its connections with diabetes mellitus. We also analyze the treatment modalities for COVID-19 and diabetes patients. The possible mechanisms of the different medications and their management limitations are also systematically reviewed. EXPERT OPINION: COVID-19 management as well as its knowledge base is changing constantly. The Pharmacotherapy and the choice of drugs also need to be specifically considered in view of the concomitant presence of these conditions in a patient. Anti-diabetic agents must be carefully evaluated in diabetic patients in view of the disease's severity, blood glucose level, appropriate treatment, and other components that could aggravate adverse events. A methodical technique is anticipated to enable the safe and rational use of drug therapy in COVID-19-positive diabetic patients to take.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , COVID-19/complications , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Prognosis
14.
PLoS One ; 18(2): e0282210, 2023.
Article in English | MEDLINE | ID: covidwho-2270133

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a new pandemic that the entire world is facing since December of 2019. Increasing evidence has shown that metformin is linked to favorable outcomes in patients with COVID-19. The aim of this study was to address whether outpatient or inpatient metformin therapy for type 2 diabetes mellitus is associated with low in-hospital mortality in patients hospitalized for COVID-19. METHODS: We searched studies published in PubMed, Embase, Google Scholar and Cochrane Library up to November 1, 2022. Raw event data extracted from individual study were pooled using the Mantel-Haenszel approach. Odds ratio (OR) or hazard ratio (HR) adjusted for covariates that potentially confound the association using multivariable regression or propensity score matching was pooled by the inverse-variance method. Random effect models were applied for meta-analysis due to variance among studies. RESULTS: Twenty-two retrospective observational studies were selected. The pooled unadjusted OR for outpatient metformin therapy and in-hospital mortality was 0.48 (95% CI, 0.37-0.62) and the pooled OR adjusted with multivariable regression or propensity score matching was 0.71 (95% CI, 0.50-0.99). The pooled unadjusted OR for inpatient metformin therapy and in-hospital mortality was 0.18 (95% CI, 0.10-0.31), whereas the pooled adjusted HR was 1.10 (95% CI, 0.38-3.15). CONCLUSIONS: Our results suggest that there is a significant association between the reduction of in-hospital mortality and outpatient metformin therapy for type 2 diabetes mellitus in patients hospitalized for COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Retrospective Studies , Propensity Score , COVID-19/complications
15.
N Engl J Med ; 388(11): 991-1001, 2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2285797

ABSTRACT

BACKGROUND: Closed-loop control systems of insulin delivery may improve glycemic outcomes in young children with type 1 diabetes. The efficacy and safety of initiating a closed-loop system virtually are unclear. METHODS: In this 13-week, multicenter trial, we randomly assigned, in a 2:1 ratio, children who were at least 2 years of age but younger than 6 years of age who had type 1 diabetes to receive treatment with a closed-loop system of insulin delivery or standard care that included either an insulin pump or multiple daily injections of insulin plus a continuous glucose monitor. The primary outcome was the percentage of time that the glucose level was in the target range of 70 to 180 mg per deciliter, as measured by continuous glucose monitoring. Secondary outcomes included the percentage of time that the glucose level was above 250 mg per deciliter or below 70 mg per deciliter, the mean glucose level, the glycated hemoglobin level, and safety outcomes. RESULTS: A total of 102 children underwent randomization (68 to the closed-loop group and 34 to the standard-care group); the glycated hemoglobin levels at baseline ranged from 5.2 to 11.5%. Initiation of the closed-loop system was virtual in 55 patients (81%). The mean (±SD) percentage of time that the glucose level was within the target range increased from 56.7±18.0% at baseline to 69.3±11.1% during the 13-week follow-up period in the closed-loop group and from 54.9±14.7% to 55.9±12.6% in the standard-care group (mean adjusted difference, 12.4 percentage points [equivalent to approximately 3 hours per day]; 95% confidence interval, 9.5 to 15.3; P<0.001). We observed similar treatment effects (favoring the closed-loop system) on the percentage of time that the glucose level was above 250 mg per deciliter, on the mean glucose level, and on the glycated hemoglobin level, with no significant between-group difference in the percentage of time that the glucose level was below 70 mg per deciliter. There were two cases of severe hypoglycemia in the closed-loop group and one case in the standard-care group. One case of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this trial involving young children with type 1 diabetes, the glucose level was in the target range for a greater percentage of time with a closed-loop system than with standard care. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; PEDAP ClinicalTrials.gov number, NCT04796779.).


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Hypoglycemic Agents , Insulin Infusion Systems , Insulin , Child , Child, Preschool , Humans , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/analysis , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/adverse effects , Insulin/therapeutic use , Insulin Infusion Systems/adverse effects
16.
Prim Care Diabetes ; 17(2): 113-118, 2023 04.
Article in English | MEDLINE | ID: covidwho-2244737

ABSTRACT

BACKGROUND AND AIMS: Type 2 Diabetes Mellitus is known to be linked to malfunctioning antiviral defense; however, its association with the severity of monkeypox is poorly understood. In this review, we discuss key immunological mechanisms in the antiviral response affected by poor glucose control that could impact the susceptibility and severity of monkeypox infection, leading to a heightened emphasis on the use of the available antidiabetic drugs. METHODS: We searched PubMed and Google scholar for articles published from January 1985 to August 2022. No criteria for publication data were set, and all articles in English were included. RESULTS: Currently, there are no studies about the risk or consequences of monkeypox infection in the diabetic population. A high incidence of diabetes is reported in countries such as China, India, Pakistan, EUA, Indonesia, Brazil, Mexico, Bangladesh, Japan, and Egypt, where unfortunately imported cases of monkeypox have been reported and the infection continues to spread. CONCLUSIONS: High incidence of diabetes together with the cessation of smallpox vaccination has left large numbers of the human population unprotected against monkeypox. The best option for the population remains confined to the prevention of infection as well as the use of hypoglycemic agents that have also been shown to improve immune mechanisms associated with viral protection.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Monkeypox , Humans , Monkeypox/drug therapy , Monkeypox/epidemiology , Monkeypox/prevention & control , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Antiviral Agents/adverse effects , Hypoglycemic Agents/therapeutic use
17.
J Diabetes ; 15(2): 86-96, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2213417

ABSTRACT

BACKGROUND: Patients with diabetes are more likely to suffer COVID-19 complications. Using noninsulin antihyperglycemic medications (AGMs) during COVID-19 infection has proved challenging. In this study, we evaluate different noninsulin AGMs in patients with COVID-19. METHODS: We searched Medline, Embase, Web of Science, and Cochrane on 24 January 2022. We used the following keywords (COVID-19) AND (diabetes mellitus) AND (antihyperglycemic agent). The inclusion criteria were studies reporting one or more of the outcomes. We excluded non-English articles, case reports, and literature reviews. Study outcomes were mortality, hospitalization, and intensive care unit (ICU) admission. RESULTS: The use of metformin rather than other glucose-lowering medications was associated with statistically significant lower mortality (risk ratio [RR]: 0.60, 95% confidence interval [CI]: 0.47, 0.77, p < .001). Dipeptidyl peptidase-4 inhibitor (DPP-4i) use was associated with statistically significantly higher hospitalization risk (RR: 1.44, 95% CI: 1.23, 1.68, p < .001) and higher risk of ICU admissions and/or mechanical ventilation vs nonusers (RR: 1.24, 95% CI: 1.04, 1.48, p < .02). There was a statistically significant decrease in hospitalization for SGLT-2i users vs nonusers (RR: 0.89, 95% CI: 0.84-0.95, p < .001). Glucagon-like peptide-1 receptor agonist (GLP-1RA) use was associated with a statistically significant decrease in mortality (RR: 0.56, 95% CI: 0.42, 073, p < 0.001), ICU admission, and/or mechanical ventilation (RR: 0.79, 95% CI: 0.69-0.89, p < .001), and hospitalization (RR: 0.73, 95% CI: 0.54, 0.98, p = .04). CONCLUSIONS: AGM use was not associated with increased mortality. However, metformin and GLP-1RA use reduced mortality risk statistically significantly. DPP-4i use was associated with a statistically significant increase in the risk of hospitalization and admission to the ICU.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Humans , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , COVID-19/epidemiology , COVID-19/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Metformin/therapeutic use , Glucagon-Like Peptide-1 Receptor
18.
N Engl J Med ; 385(6): 503-515, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-2160403

ABSTRACT

BACKGROUND: Tirzepatide is a dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist that is under development for the treatment of type 2 diabetes. The efficacy and safety of once-weekly tirzepatide as compared with semaglutide, a selective GLP-1 receptor agonist, are unknown. METHODS: In an open-label, 40-week, phase 3 trial, we randomly assigned 1879 patients, in a 1:1:1:1 ratio, to receive tirzepatide at a dose of 5 mg, 10 mg, or 15 mg or semaglutide at a dose of 1 mg. At baseline, the mean glycated hemoglobin level was 8.28%, the mean age 56.6 years, and the mean weight 93.7 kg. The primary end point was the change in the glycated hemoglobin level from baseline to 40 weeks. RESULTS: The estimated mean change from baseline in the glycated hemoglobin level was -2.01 percentage points, -2.24 percentage points, and -2.30 percentage points with 5 mg, 10 mg, and 15 mg of tirzepatide, respectively, and -1.86 percentage points with semaglutide; the estimated differences between the 5-mg, 10-mg, and 15-mg tirzepatide groups and the semaglutide group were -0.15 percentage points (95% confidence interval [CI], -0.28 to -0.03; P = 0.02), -0.39 percentage points (95% CI, -0.51 to -0.26; P<0.001), and -0.45 percentage points (95% CI, -0.57 to -0.32; P<0.001), respectively. Tirzepatide at all doses was noninferior and superior to semaglutide. Reductions in body weight were greater with tirzepatide than with semaglutide (least-squares mean estimated treatment difference, -1.9 kg, -3.6 kg, and -5.5 kg, respectively; P<0.001 for all comparisons). The most common adverse events were gastrointestinal and were primarily mild to moderate in severity in the tirzepatide and semaglutide groups (nausea, 17 to 22% and 18%; diarrhea, 13 to 16% and 12%; and vomiting, 6 to 10% and 8%, respectively). Of the patients who received tirzepatide, hypoglycemia (blood glucose level, <54 mg per deciliter) was reported in 0.6% (5-mg group), 0.2% (10-mg group), and 1.7% (15-mg group); hypoglycemia was reported in 0.4% of those who received semaglutide. Serious adverse events were reported in 5 to 7% of the patients who received tirzepatide and in 3% of those who received semaglutide. CONCLUSIONS: In patients with type 2 diabetes, tirzepatide was noninferior and superior to semaglutide with respect to the mean change in the glycated hemoglobin level from baseline to 40 weeks. (Funded by Eli Lilly; SURPASS-2 ClinicalTrials.gov number, NCT03987919.).


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/administration & dosage , Glucagon-Like Peptides/administration & dosage , Hypoglycemic Agents/administration & dosage , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Therapy, Combination , Female , Gastric Inhibitory Polypeptide/adverse effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/adverse effects , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Injections, Subcutaneous , Male , Metformin/therapeutic use , Middle Aged , Nausea/chemically induced , Weight Loss/drug effects
19.
Diabetes Res Clin Pract ; 195: 110205, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2149622

ABSTRACT

AIMS: This study aims to examine the effectiveness of using sodium glucose transporter-2 inhibitor (SGLT-2i) before hospital admission on Covid-19 outcomes in diabetic patients. METHODS: A literature search was conducted using specific keywords until October 24th, 2022 on 4 databases: Medline, Scopus, Cochrane Library, and ClinicalTrials.gov. All articles regarding SGLT-2i in diabetic patients with Covid-19 were included in the study. Outcomes in this study were calculated using random-effect models to generate pooled odds ratio (OR) with 95% confidence intervals (CI). RESULTS: A total of 17 studies were included in the analysis. Our meta-analysis showed that pre-admission use of SGLT-2i was associated with reduced mortality (OR 0.69; 95 %CI: 0.56 - 0.87, p = 0.001, I2 = 91 %) and severity of Covid-19 (OR 0.88; 95 %CI: 0.80 - 0.97, p = 0.008, I2 = 13 %). This benefit of SGLT-2i on Covid-19 mortality was not significantly affected by patient's factors such as age (p = 0.2335), sex (p = 0.2742), hypertension (p = 0.2165), heart failure (p = 0.1616), HbA1c levels (p = 0.4924), metformin use (p = 0.6617), duration of diabetes (p = 0.7233), and BMI (p = 0.1797). CONCLUSIONS: This study suggests that SGLT-2i as glucose lowering treatment in patients with diabetes has a positive effect on Covid-19 outcomes, therefore can be considered as an antidiabetic drug of choice, especially during the Covid-19 pandemic. Short Title: SGLT-2i in diabetes and Covid-19. REGISTRATION DETAILS: CRD42022369784.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Pandemics , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Sodium-Glucose Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL